Widely employed nitrophenols (NPs) are refractory and antioxidant due to their strong electron-withdrawing group (-NO2). Actually, NPs are readily reduced to aminophenols (APs). However, APs remain toxic and necessitate further treatment. Herein, we utilized a novel sequential reduction-oxidation system of carbon-modified zero-valent aluminum (C@ZVAl) combined with persulfate (PS) for the thorough removal of both NPs and APs. The results demonstrated that p-nitrophenol (PNP, up to 1000 mg/L) exhibited complete reduction to p-aminophenol (PAP), and then over 98.0 % of PAP could be effectively oxidized, in the meantime the removal rate of chemical oxygen demand (COD) was as high as 95.9 %. Based on the SEM and XPS characterizations, we found that C@ZVAl has exceptionally high reactivity that generates massive electrons and reduces PNP to PAP through accelerated electron transfer. In the subsequent oxidation step, PS can be rapidly activated by C@ZVAl to generate SO4− radicals for PAP oxidization. Meanwhile, the mineralization of COD proceeds. The temporal binding of reduction and oxidation can be regulated by varying the PS dosing time. Namely, the appropriate delay in PS dosing facilitates sufficient reduction to provide enough reactants for oxidation, favoring the mineralization of PNP and COD. More crucially, dinitrodiazophenol (DDNP) in an actual explosive wastewater without any pretreatment can be effectively mineralized by this sequential reduction-oxidation system, affirming the excellent performance of this process in practical applications. In conclusion, the C@ZVAl-PS based sequential reduction-oxidation looks very promising for enhanced mineralization of nitro-substituted organic contaminants.
Read full abstract