Energy release in solar flares occurs during the impulsive phase, which is a period of a few to about ten minutes, during which energy is injected into the flare region in bursts with durations of various time scales, from a few tens of seconds down to 0.1 s or even shorter. Non-thermal heating is observed during a short period, not longer than a few minutes, in the very first part of the impulsive phase; in average flares, with ambient particle densities not larger than a few times 1010 cm−3 it is due to thick-target electron beam injection, causing chromospheric ablation followed by convection. In flares with larger densities the heating is due to thermal fronts (Section 1). The average energy released in chromospheric regions is a few times 1030 erg, and an average number of 1038 electrons with E ≳ 15 keV is accelerated. In subsecond pulses these values are about 1035 electrons and about 1027 erg per subsecond pulse. The total energy released in flares is larger than these values (Section 2). Energization occurs gradually, in a series of fast non-explosive flux-thread interactions, on the average at levels about 104 km above the solar photosphere, a region permeated by a large number (≳ 10) of fluxthreads, each carrying electric currents of ≈ 1010–1011 A. The energy is fed into the flare by differential motions of magnetic fields driven by photospheric-chromospheric movements (Section 3). In contrast to these are the high-energy flares, characterized by the emission of gamma-radiation and/or very high-frequency (millimeter) radiobursts. Observations of such flares, of the flare neutron emission, as well as the observation of 3He-rich interplanetary plasma clouds from flares all point to a common source, identified with shortlived (∼ 0.1 s) superhot (≳ 108 K) flare knots, situated in chromospheric levels (Section 4). Pre-flare phenomena and the existence of homologous flares prove that flare energization can occur repeatedly in the same part of an active region: the consequent conclusions are that only seldom the full energy of an active region is exhausted in one flare, or that the flare energy is generated anew between homologous flares; this latter case looks more probable (Section 5). Flare energization requires the formation of direct electric fields, in value comparable with, or somewhat smaller than the Dreicer field (Section 6). Such fields originate by current-thread reconnection in a regime in which the current sheet is thin enough to let resistive instability originate (Section 7). Particle acceleration occurs ‘by fast reconnection in magnetic fields ≳ 100 G and electric fields exceeding about 0.3 times the Dreicer field at fairly low particle densities (≈ 1010 cm−3); for larger densities plasma heating is expected to occur (Section 8). Transport of accelerated particles towards interplanetary space demands a field-line configuration open to space. Such a configuration originates mainly after the gradual gamma-ray/proton flares, and particularly after two-ribbon flares; these flares belong to the dynamic flares in Sturrock and Svestka's flare classification. Acceleration to GeV energies occurs subsequently in shock waves, probably by first-order Fermi acceleration (Section 9).
Read full abstract