Abstract The increasing availability of flights on suborbital rockets creates new avenues for the study of spaceflight effects on biological systems, particularly of the transitions between hypergravity and microgravity. This paper presents an initial comparison of the responses of Arabidopsis thaliana to suborbital and atmospheric parabolic flights as an important step toward characterizing these emerging suborbital platforms and their effects on biology. Transcriptomic profiling of the response of the Arabidopsis ecotype Wassilewskija (WS) to the aggregate suborbital spaceflight experiences in Blue Origin New Shepard and Virgin Galactic SpaceShipTwo revealed that the transcriptomic load induced by flight differed between the two flights, yet was biologically related to traditional parabolic flight responses. The sku5 skewing mutant and 14-3-3κ:GFP regulatory protein overexpression lines, flown in the Blue Origin and parabolic flights, respectively, each showed altered intra-platform responses compared to WS. An additional parabolic flight using the F-104 Starfighter showed that the response of 14-3-3κ:GFP to flight was modulated in a similar manner to the WS line. Despite the differing genotypes, experimental workflows, flight profiles, and platforms, differential gene expression linked to remodeling of central metabolic processes was commonly observed in the flight responses. However, the timing and directionality of differentially expressed genes involved in the conserved processes differed among the platforms. The processes included carbon and nitrogen metabolism, branched-chain amino acid degradation, and hypoxic responses. The data presented herein highlight the potential for various suborbital platforms to contribute insights into biological responses to spaceflight, and further suggest that in-flight fixation during suborbital experiments will enhance insights into responses during each phase of flight.