Using advanced bibliometric analysis, we systematically mapped the most current literature on urban air pollution and neurodevelopmental conditions to identify key patterns and associations. Here, we review the findings from the broader literature by discussing a distilled, validated subset of 44 representative studies. Literature highlights a complex relationship between environmental toxins, neurodevelopmental disorders in children, and neurobehavioral pathways involving oxidative stress, neuroinflammation, and protein aggregation. Chronic prenatal and postnatal exposure to airborne pollutants - such as particulate matter and heavy metals - may contribute to early formation of amyloid plaques through preadolescence. These processes may compromise synaptic plasticity and neural integrity, which can progressively induce cognitive, emotional, and behavioral dysregulation, sharing some pathological features traditionally associated with adult neurodegenerative diseases. The interactions between air pollution exposure levels, developmental timing, and factors such as genetic vulnerability associated with neurodevelopmental disorders are still undetermined. However, accelerated neurodegenerative processes leading to cognitive decline and suboptimal mental health in children and adolescents seem most likely linked with pollutants penetrating the blood-brain barrier, and inducing oxidative stress and neuroinflammation. Urgent precautionary action might reduce environmental exposures during critical early developmental periods, thereby safeguarding children's cognitive function and mental health.
Read full abstract