There is growing interest in the overlap reduction function in pulsar timing array observations as a probe of modified gravity. However, current approximations to the Hellings–Downs curve for subluminal gravitational wave propagation, say v<1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$v<1$$\\end{document}, diverge at small angular pulsar separation. In this paper, we find that the overlap reduction function for the v<1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$v<1$$\\end{document} case is sensitive to finite distance effects. First, we show that finite distance effects introduce an effective cut-off in the spherical harmonics decomposition at ℓ∼1-v2kL\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell \\sim \\sqrt{1-v^2} \\, kL$$\\end{document}, where ℓ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell $$\\end{document} is the multipole number, k the wavenumber of the gravitational wave and L the distance to the pulsars. Then, we find that the overlap reduction function in the small angle limit approaches a value given by πkLv2(1-v2)2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\pi kL\\,v^2\\,(1-v^2)^2$$\\end{document} times a normalization factor, exactly matching the value for the autocorrelation recently derived. Although we focus on the v<1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$v<1$$\\end{document} case, our formulation is valid for any value of v.
Read full abstract