Abstract

We consider the relic density and positivity bounds for freeze-in scalar dark matter with general Higgs-portal interactions up to dimension-8 operators. When dimension-4 and dimension-6 Higgs-portal interactions are proportional to mass squares for Higgs or scalar dark matter in certain microscopic models such as massive graviton, radion or general metric couplings with conformal and disformal modes, we can take the dimension-8 derivative Higgs-portal interactions to be dominant for determining the relic density via the 2-to-2 thermal scattering of the Higgs fields after reheating. We discuss the implications of positivity bounds for microscopic models. First, massive graviton or radion mediates attractive forces between Higgs and scalar dark matter and the resultant dimension-8 operators respect the positivity bounds. Second, the disformal couplings in the general metric allow for the subluminal propagation of graviton but violate the positivity bounds. We show that there is a wide parameter space for explaining the correct relic density from the freeze-in mechanism and the positivity bounds can curb out the dimension-8 derivative Higgs-portal interactions nontrivially in the presence of the similar dimension-8 self-interactions for Higgs and dark matter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.