Sleep loss and circadian disruption-a state of misalignment between physiological functions and imposed sleep/wake behavior-supposedly play central roles in the etiology of shift work-related pathologies [1-4]. Circadian entrainment is, however, highly individual [5], resulting in different chronotypes [6, 7]. Chronotype in turn modulates the effects of working times: compared to late chronotypes, earlier ones sleep worse and shorter and show higher levels of circadian misalignment during night shifts, while late types experience more sleep and circadian disruption than early types when working morning shifts [8]. To promote sleep and reduce the mismatch between circadian and working time, we implemented a chronotype-adjusted (CTA) shift schedule in a factory. We abolished the most strenuous shifts for extreme chronotypes (i.e., mornings for late chronotypes, nights for early ones) and examined whether sleep duration and quality, social jetlag [9, 10], wellbeing, subjective stress perception, and satisfaction with leisure time improved in this schedule. Intermediate chronotypes (quartiles 2 and 3) served as a control group, still working morning (6:00-14:00), evening (14:00-22:00), and night (22:00-6:00) shifts, with two strenuous shifts (out of twelve per month) replaced by evening ones. We observed a significant increase of self-reported sleep duration and quality, along with increased wellbeing ratings on workdays among extreme chronotypes. The CTA schedule reduced overall social jetlag by 1hr, did not alter stress levels, and increased satisfaction with leisure time (early types only). Chronotype-based schedules thus can reduce circadian disruption and improve sleep; potential long-term effects on health and economic indicators need to be elucidated in future studies.