We present an approach to identify the plant species from the contour information from occluded leaf image using a database of full plant leaves. Although contour based 2D shape matching has been studied extensively in the last couple of decades, matching occluded leaves with full leaf databases is an open and little worked on problem. Classifying occluded plant leaves is even more challenging than full leaf matching because of large variations and complexity of leaf structures. Matching an occluded contour with all the full contours in a database is an NP-hard problem, so our algorithm is necessarily suboptimal. First, we represent the 2D contour points as a β-Spline curve. Then, we extract interest points on these curves via the Discrete Contour Evolution (DCE) algorithm. We use subgraph matching using the DCE points as graph nodes, which produces a number of open curves for each closed leaf contour. Next, we compute the similarity transformation parameters (translation, rotation, and uniform scaling) for each open curve. We then "overlay" each open curve with the inverse similarity transformed occluded curve and use the Fréchet distance metric to measure the quality of the match, retaining the best η matched curves. Since the Fréchet metric is cheap to compute but not perfectly correlated with the quality of the match, we formulate an energy functional that is well correlated with the quality of the match, but is considerably more expensive to compute. The functional uses local and global curvature, Shape Context descriptors, and String Cut features. We minimize this energy functional using a convex-concave relaxation framework. The curve among these best η curves, that has the minimum energy, is considered to be the best overall match with the occluded leaf. Experiments on three publicly available leaf image database shows that our method is both effective and efficient, outperforming other current state-of-the-art methods. Occlusion is measured as the percentage of the overall contour (and not leaf area) that is missing. We show that our algorithm can, even for leaves with a high amounts of occlusion (say 50 percent occlusion), still identify the best full leaf match from the databases.