Recently, we measured two anomalous diffusion (AD) parameters: the spatial and the temporal AD indices, called γ and α, respectively, by using spectroscopic pulse gradient field methods. We showed that γ quantifies pseudo-superdiffusion processes, while α quantifies subdiffusion processes. Here, we propose γ and α maps obtained in a controlled heterogeneous phantom, comprised of packed micro-beads in water and in excised human meningiomas. In few words, α maps represent the multi-scale spatial distribution of the disorder degree in the system, while γ maps are influenced by local internal gradients, thus highlighting the interface between compartments characterized by different magnetic susceptibility. γ maps were already obtained by means of AD stretched exponential imaging and α-type maps have been recently achieved for fixed rat brain with the aim of highlighting the fractal dimension of specific brain regions. However, to our knowledge, the maps representative of the spatial distribution of α and γ obtained on the same controlled sample and in the same excised tissue have never been compared. Moreover, we show here, for the first time, that α maps are representative of the spatial distribution of the disorder degree of the system.In a first phase, γ and α maps of controlled phantom characterized by an ordered and a disordered rearrangement of packed micro-beads of different sizes in water and by different magnetic susceptibility (Δχ) between beads and water were obtained. In a second phase, we investigated excised human meningiomas of different consistency.Results reported here, obtained at 9.4T, show that α and γ maps are characterized by a different image contrast. Indeed, unlike γ maps, α maps are insensible to (Δχ) and they are sensible to the disorder degree of the microstructural rearrangement. These observations strongly suggest that AD indices α and γ reflect some additional microstructural information which cannot be obtained using conventional diffusion methods based on Gaussian diffusion. Moreover, α and γ maps obtained in excised meningiomas seem to provide more microstructural details above those obtained with conventional DTI analysis, which could be used to improve the classification of meningiomas based on their consistency.