Although burning grass and crop residues is prohibited in many countries, farmers perceive it as a quick and inexpensive way to eliminate unwanted biomass. The aim of this study was to estimate the impact of heating temperature (simulation of biomass burning) on the studied properties (soil organic carbon (SOC) content, pH(H2O), water drop penetration time, WDPT, and contact angle, CA) of acidic sandy soils. Soil samples were taken from the experimental sites S1, S2, and S3 at Studienka village in the Borská nížina lowland (southwestern Slovakia). Experimental site S1 was arable land, experimental site S2 was arable land abandoned for approximately 10 years, and experimental site S3 was arable land abandoned for approximately 30 years with scattered Scots pine (Pinus sylvestris L.) trees. It was found that all the soil properties studied were strongly affected by heating. A drop in SOC was observed in all the soils for the heating temperature between 20 and 600 °C. Due to the incomplete combustion of SOC, a small (0.1–0.7%) SOC content was recorded even in soils heated to between 600 and 900 °C. An increase in pH(H2O) was observed in all the soils for the heating temperature higher than 300 °C. Soil from the experimental site S1 was wettable (WDPT < 5 s) for all of the heating temperatures. WDPT vs. heating temperature relationships for the soils from the experimental sites S2 and S3 were more complex. After a decrease in the heating temperature of 50 °C, an increase in WDPT for the heating temperature between 50 °C and 300 °C (for S3 soil) and 350 °C (for S2 soil) was registered. Finally, the WDPT dramatically dropped to 0 for the heating temperature of 350 °C (for S3 soil) and 400 °C (for S2 soil). CA started to decrease at 300 °C in all the soils and dropped to 0° for all the soils at 800 °C. CA > 0° measured in soils for the heating temperature between 400 and 800 °C, as a consequence of the small SOC contents due to the incomplete combustion of SOC, is a novelty of this study which demonstrates that CA is more sensitive to the changes in subcritical water repellency than WDPT.
Read full abstract