This study developed an ultrasound synergistic subcritical hydrothermal treatment method (U-SHT) to address the challenges posed by the high oil and water content, complex composition, and hazardous nature of oily sludge (OS) generated during the pretreatment of coal chemical wastewater. The study investigated the efficiency of this method for the harmless disposal and resource recovery of OS, and the migration-transformation mechanism of hazardous organic pollutants in OS. The findings revealed that U-SHT achieved a removal efficiency of chemical oxygen demand in OS of 91.16 %, an oil resource recovery efficiency of 96.60 %, and a residual oil rate of 0.28 %, meeting API emission standards. Further research indicated that the solubilizing effect of the surfactant on the oil enhanced the demulsifying effect of ultrasonic cavitation on the emulsified structure of OS, enabling ultrasound to efficiently release and disperse pollutants within OS. This promoted the decomposition and transformation of pollutants under subcritical hydrothermal conditions, with synergistic removal efficiencies for typical pollutants such as long-chain alkanes, polycyclic aromatic hydrocarbons, and phenols reaching 96.61 %, 97.63 %, and 97.76 %, respectively. Economic evaluation indicated that the cost of OS treatment was $29.66/m3, significantly lower than existing methods, demonstrating promising practical application prospects.
Read full abstract