Making use of a linear operator, which is defined here by means of the Hadamard product (or convolution), we consider two subclasses <svg style="vertical-align:-5.73167pt;width:113.5px;" id="M1" height="19.362499" version="1.1" viewBox="0 0 113.5 19.362499" width="113.5" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.162)"><path id="x1D439" d="M599 650l-18 -160l-30 -2q-2 70 -11 94q-5 16 -26 24t-75 8h-94q-27 0 -33.5 -6.5t-12.5 -32.5l-43 -226h108q52 0 72.5 5t31 18t28.5 52h28l-40 -200h-28q-1 42 -6 56.5t-24.5 21t-70.5 6.5h-108l-32 -177q-13 -65 1 -80.5t88 -22.5l-8 -28h-279l6 28q61 5 77.5 20.5
t29.5 81.5l72 387l7.5 40.5t1 26.5t-4 18t-15.5 10t-24 6t-37 4l8 28h461z" /></g> <g transform="matrix(.012,-0,0,-.012,10.637,16.25)"><path id="x1D45D" d="M570 304q0 -108 -87 -199q-40 -42 -94.5 -74t-105.5 -43q-41 0 -65 11l-29 -141q-9 -45 -1.5 -58t45.5 -16l26 -2l-5 -29l-241 -10l4 26q51 10 67.5 24t26.5 60l113 520q-54 -20 -89 -41l-7 26q38 28 105 53l11 49q20 25 77 58l8 -7l-17 -77q39 14 102 14q82 0 119 -36
t37 -108zM482 289q0 114 -113 114q-26 0 -66 -7l-70 -327q12 -14 32 -25t39 -11q59 0 118.5 81.5t59.5 174.5z" /></g><g transform="matrix(.012,-0,0,-.012,17.693,16.25)"><path id="x2C" d="M95 130q31 0 61 -30t30 -78q0 -53 -38 -87.5t-93 -51.5l-11 29q77 31 77 85q0 26 -17.5 43t-44.5 24q-4 0 -8.5 6.5t-4.5 17.5q0 18 15 30t34 12z" /></g><g transform="matrix(.012,-0,0,-.012,20.406,16.25)"><path id="x1D45B" d="M495 86q-46 -47 -87 -72.5t-63 -25.5q-43 0 -16 107l49 210q7 34 8 50.5t-3 21t-13 4.5q-35 0 -109.5 -72.5t-115.5 -140.5q-21 -75 -38 -159q-50 -10 -76 -21l-6 8l84 340q8 35 -4 35q-17 0 -67 -46l-15 26q44 44 85.5 70.5t64.5 26.5q35 0 10 -103l-24 -98h2
q42 56 97 103.5t96 71.5q46 26 74 26q9 0 16 -2.5t14 -11.5t9.5 -24.5t-1 -44t-13.5 -68.5q-30 -117 -47 -200q-4 -19 -3.5 -25t6.5 -6q21 0 70 48z" /></g> <g transform="matrix(.017,-0,0,-.017,27,12.162)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,32.882,12.162)"><path id="x1D44E" d="M483 97q-42 -50 -88.5 -79.5t-68.5 -29.5q-37 0 -17 93l22 102h-2q-54 -79 -144 -149q-59 -46 -100 -46q-24 0 -43 29t-19 86q0 78 34.5 153t94.5 120q41 31 94 51.5t98 20.5q29 0 72 -9q26 -6 39 -6l2 -4q-30 -117 -67 -323q-8 -41 2 -41q16 0 79 58zM374 387
q-32 15 -73 15q-52 0 -83 -23q-48 -36 -78 -108.5t-30 -152.5q0 -33 8.5 -50.5t20.5 -17.5q31 0 107 79t99 132q15 40 29 126z" /></g><g transform="matrix(.017,-0,0,-.017,41.483,12.162)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,48.18,12.162)"><path id="x1D450" d="M383 397q0 -32 -35 -49q-12 -6 -23 8q-37 45 -84 45t-90 -71q-40 -65 -40 -167q0 -57 22 -86t59 -29q38 0 81.5 24.5t69.5 51.5l16 -21q-44 -53 -104 -84t-109 -31q-56 0 -89.5 41t-33.5 117q0 61 30 124t79 105q33 28 81 50.5t86 22.5q34 0 59 -15.5t25 -35.5z" /></g><g transform="matrix(.017,-0,0,-.017,55.082,12.162)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,61.796,12.162)"><path id="x1D706" d="M529 97q-70 -109 -136 -109q-41 0 -56 94q-23 144 -37 284q-38 -88 -99 -202.5t-93 -156.5q-26 -8 -76 -19l-9 21q71 78 145.5 193t124.5 232q-5 84 -15 128q-12 55 -29.5 75.5t-42.5 20.5q-21 0 -45 -13l-8 24q16 17 46 30t55 13q43 0 70 -46.5t40 -169.5
q27 -249 51 -392q7 -46 23 -46q24 0 70 60z" /></g><g transform="matrix(.017,-0,0,-.017,71.18,12.162)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,77.894,12.162)"><path id="x1D434" d="M716 28l-8 -28h-254l8 28q55 5 66 17.5t5 47.5l-30 145h-232l-74 -138q-21 -43 -11 -54.5t72 -17.5l-6 -28h-235l8 28q53 7 73.5 21t53.5 70l319 540l33 8q6 -43 33 -176l80 -381q10 -49 26.5 -63t72.5 -19zM495 281l-49 264h-2l-149 -264h200z" /></g><g transform="matrix(.017,-0,0,-.017,90.354,12.162)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,97.052,12.162)"><path id="x1D435" d="M594 511q0 -122 -171 -157l1 -2q158 -33 158 -159q0 -52 -34.5 -95t-90.5 -65q-76 -33 -217 -33h-223l8 28q63 5 79.5 19t26.5 72l83 426q9 48 -2.5 60t-77.5 17l6 28h259q195 0 195 -139zM499 509q0 59 -37 83t-91 24q-36 0 -51 -9q-17 -9 -22 -44l-35 -195h62
q82 0 128 37t46 104zM481 199q0 71 -48 102.5t-121 31.5h-56l-37 -201q-11 -58 7.5 -77t80.5 -19q76 0 125 44.5t49 118.5z" /></g><g transform="matrix(.017,-0,0,-.017,107.54,12.162)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg> and <svg style="vertical-align:-5.73167pt;width:115.225px;" id="M2" height="19.362499" version="1.1" viewBox="0 0 115.225 19.362499" width="115.225" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.162)"><path id="x1D43A" d="M713 296l-5 -25q-47 -7 -59 -20t-23 -72l-15 -79q-9 -48 -3 -74q-15 -3 -55 -13t-63 -15t-59.5 -10t-70.5 -5q-149 0 -243 80t-94 220q0 169 127.5 276.5t336.5 107.5q91 0 206 -36l-10 -165l-29 -1q1 85 -47.5 126t-146.5 41q-153 0 -243.5 -97t-90.5 -242
q0 -122 68.5 -198.5t188.5 -76.5q121 0 139 75l20 86q13 58 -1.5 70.5t-99.5 20.5l5 26h267z" /></g> <g transform="matrix(.012,-0,0,-.012,12.375,16.25)"><use xlink:href="#x1D45D"/></g><g transform="matrix(.012,-0,0,-.012,19.431,16.25)"><use xlink:href="#x2C"/></g><g transform="matrix(.012,-0,0,-.012,22.144,16.25)"><use xlink:href="#x1D45B"/></g> <g transform="matrix(.017,-0,0,-.017,28.738,12.162)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,34.619,12.162)"><use xlink:href="#x1D44E"/></g><g transform="matrix(.017,-0,0,-.017,43.22,12.162)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,49.918,12.162)"><use xlink:href="#x1D450"/></g><g transform="matrix(.017,-0,0,-.017,56.819,12.162)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,63.534,12.162)"><use xlink:href="#x1D706"/></g><g transform="matrix(.017,-0,0,-.017,72.917,12.162)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,79.615,12.162)"><use xlink:href="#x1D434"/></g><g transform="matrix(.017,-0,0,-.017,92.075,12.162)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,98.789,12.162)"><use xlink:href="#x1D435"/></g><g transform="matrix(.017,-0,0,-.017,109.278,12.162)"><use xlink:href="#x29"/></g> </svg> of multivalent analytic functions with negative coefficients in the open unit disk. Some modified Hadamard products, integral transforms, and the partial sums of functions belonging to these classes are studied.