This study evaluates the impacts of climate change on the habitat suitability of eight subalpine plant species in South Korea under four shared socioeconomic pathways (SSP) scenarios, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Using high-resolution climate data and random forest-based species distribution models (SDMs), we predicted habitat changes between 2010 and 2090s. Key bioclimatic variables, including annual mean temperature (BIO1) and annual precipitation (BIO12), were identified as primary drivers of habitat shifts. SSP5-8.5 scenarios resulted in significant habitat losses and upward altitudinal shifts, with species such as <i>Pinus pumila</i> and <i>Abies nephrolepis</i> losing all suitable habitats by 2090s. In contrast, SSP1-2.6 indicated more stable conditions, preserving habitats for species like <i>Abies holophylla</i> and Taxus cuspidata, highlighting the potential benefits of emission reduction efforts. This study underscores the urgent need for adaptive conservation strategies and robust emission mitigation policies to protect high-risk species and regions, safeguarding subalpine biodiversity. These findings provide a scientific foundation for policymakers to design sustainable biodiversity conservation strategies and foster climate resilience in subalpine ecosystems.
Read full abstract