The utricle of the red-eared turtle was subjected to forced sinusoidal oscillations across various frequencies (10-125 Hz) and amplitudes (5-9 μm) to determine dynamic characteristics of the utricle under natural inertial stimulation. The utricle was maintained in physiologic solution during the entire experiment. Utricular specimens were prepared so that the Otoconial Layer (OL) crystals were exposed yet undisturbed, and the neuroepithelium was secured to a glass slide with dental floss strands. A piezoelectric-actuated platform, fitted to the stage of the microscope, created controlled sinusoidal displacement along the utricle's medial-lateral direction. The OL surface displacement was measured through the microscope with high-speed video at 1500 fps. A sub-pixel image registration algorithm was used to achieve displacement resolution ⩽ 15 nm. The Membranous Shelf (MS), that overlies the macula, was recorded with high-speed video under identical amplitude and frequency inputs and was used as a reference point. Maximum displacement amplitudes of the OL and MS were used to determine the Amplitude Ratio (AR) of the OL relative to the MS. ARs at various frequencies were fit to a single degree of freedom model of the utricle to determine the utricle's natural frequency of 363 Hz (95% confidence intervals: 328, 397) with a damping ratio of 0.96 (0.8, 1.12).