The β-secretase, sometimes referred to as BACE1 or Asp2, is the enzyme responsible for initiating the production of Aβ by breaking down the amyloid precursor protein. Hence, BACE is a pivotal target for pharmacological intervention aimed at diminishing the production of Aβ in Alzheimer's disease (AD). We did a quantitative structure-activity relationship (QSAR) study on 1235 compounds that had been experimentally reported as BACE-1 inhibitors (Ki) to find the target molecule and structural patterns linked to blocking the BACE-1 receptor. The OECD-recommended genetic algorithm-multiple linear regression (GA-MLR) QSAR model strikes a good balance between being able to make accurate predictions and understanding how things work. It achieves high values for many evaluation metrics, including R2tr = 0.8047, Q2LMO = 0.802, R2ex = 0.805, CCCex = 0.891, Q2-F1=0.801, Q2-F2=0.799, and Q2-F3=0.815. The mechanistic interpretation of QSAR has identified some nitrogen atoms that are required to block beta-secretase and make it less effective at doing its job. A positively charged aromatic carbon atom has a more significant impact on beta-secretase-1 inhibition. The docking study showed that the catalytic dye residues Asp32 and Asp228 become protonated when compound 27 is present, but they stay unprotonated when compound 27 is not present. These rings of pyrazine and pyridine interact hydrophobically with Tyr71 and Ile118 residues, confirming the pharmacophoric features seen in the QSAR data. We examined the stability of both the protein-ligand complex and the apo-protein. The apoprotein had an average gyration radius of 22.13, whereas the protein-ligand complex had an average gyration radius of 22.91. No changes were made to the results from the molecular docking, molecular dynamics (MD) simulation, MMGBSA (Molecular Mechanics Generalized Born Surface Area), or DFT analyses. Therefore, the current work could effectively contribute to the future development of BACE inhibitors in medication design.
Read full abstract