The combustion performance of hydrogen fuel in a scramjet combustor has been a popular focus for scholars all over the world. In this study, the influence of the jet-to-crossflow pressure ratio on combustion performance in a scramjet combustor was investigated numerically, and the influence of a wall-mounted cavity was evaluated. The simulations were conducted using the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the renormalization group (RNG) k-e turbulence model and the single-step chemical reaction mechanism. This numerical approach was validated by comparing predicted results with published experimental shadowgraphs and velocity and temperature measurements. When the pressure of the wall-injector increases, the performance of the combustor decreases. At the same inflow condition, this may lead to a scram-to-ram mode transition. The cavity adopted in this study would prevent pre-combustion shock waves from pushing out of the isolator and help to stabilize the flow field, but it would decrease the mixing and combustion efficiencies.
Read full abstract