One of the researchers' concerns in structural engineering is to control the dynamic behavior of structures efficiently. The TMD (tuned mass damper) is one of the effective methods of controlling the vibration of structures, and various numerical techniques have been proposed to find the optimal parameters of the TMD. This paper develops a new explicit formula to derive the optimal parameters of the TMD of a single degree of freedom (SDOF) structure under seismic load using a genetic algorithm (GA). In addition, the state-space model and the H2 norm function are used to identify the optimal frequency ratio and damping ratio of the TMD that minimize the overall vibration energy of the structure. The MATLAB curve fitting toolbox is used for the explicit formula proposal, and the validity of the proposed formula is verified through multidimensional performance verification technique. Finally, the TMD parameters of the SDOF structure are applied to the multi-degrees of freedom (MDOF) structure to compare and analyze with the existing research results, and the results of the explicit formula proposed in this paper are confirmed to be excellent. This paper can suggest a new direction for determining the optimal TMD parameters using a GA and can be effectively applied to vibration control problems of various structures.