The phenomenon of aerodynamic instability caused by wind is usually a major design criterion for long-span cable-supported bridges. If the wind speed exceeds the critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The prediction of the flutter boundary therefore requires accurate and robust models. The state-of-the-art theory concerning determination of the flutter stability limit is presented. Usually bridge decks are bluff and therefore the aeroelastic forces under wind action have to be experimentally evaluated in wind tunnels or numerically computed through Computational Fluid Dynamics (CFD) simulations. The self-excited forces are modelled using aerodynamic derivatives obtained through CFD forced vibration simulations on a section model. The two-degree-of-freedom flutter limit is computed by solving the Eigenvalue problem.A probabilistic flutter analysis utilizing a meta-modelling technique is used to evaluate the effect of parameter uncertainty. A bridge section is numerically modelled in the CFD simulations. Here flutter derivatives are considered as random variables. A methodology for carrying out sensitivity analysis of the flutter phenomenon is developed. The sensitivity with respect to the uncertainty of flutter derivatives and structural parameters is considered by taking into account the probability distribution of the flutter limit. A significant influence on the flutter limit is found by including uncertainties of the flutter derivatives due to different interpretations of scatter in the CFD simulations. The results indicate that the proposed probabilistic flutter analysis provides extended information concerning the accuracy in the prediction of flutter limits.The final aim is to set up a method to estimate the flutter limit with probabilistic input parameters. Such a tool could be useful for bridge engineers at early design stages. This study shows the difficulties in this regard which have to be overcome but also highlights some interesting and promising results.