<abstract> <p>Existing structural optimization software tools only integrate the Euler buckling function of rods and plates and do not consider the buckling strength constraint of stiffened plates, thus failing to meet the optimization design requirements of thin-walled structures such as ship hulls. In this study, according to the buckling strength specifications for stiffened plates of ships, the custom software development of a structural optimization program with "buckling constraints of stiffened plates" was performed using the HyperMesh optimization design software. The finite-element grid of the stiffened plate was divided; the average stress, stress gradient and other parameters associated with the buckling of stiffened plates were determined; the DRESP3 card was set; the external OML function file was linked and the buckling strength of the stiffened plates was introduced into the dimensional optimization design model as a constraint. The proposed method was used to optimize the structure scantlings of a platform, achieving a reduction of 8.96% compared with the original scheme, while also meeting the requirements of structural strength, deformation and buckling strength. The results demonstrated that the dimensional optimization software with buckling constraints is operable and can aid in the rapid structural optimization design of stiffened plates.</p> </abstract>