Entomopathogenic nematodes (EPNs) have emerged as a promising tool for controlling soil-dwelling crop pests. However, their efficacy varies according to EPN populations and targeted hosts. Wireworms are polyphagous insects causing significant crop losses, especially since the ban on pesticides previously used for their control. They are highly resistant to EPN populations and require high number of infective juveniles (IJs) to achieve optimal mortality rates. In this research, we collected and compared the virulence of 16 EPN populations, of foreign origin, purchased or collected from wireworms infested fields. Then, we have tested two hypotheses: (i) smaller nematodes induce heightened mortality rates against wireworms; (ii) virulence levels can be linked to nematodes-bacteria complex. Mortality rates scaled from three to 43 % after 56 days of continuous exposure across the 16 tested EPN populations (Heterorhabditis spp and Steinernema spp.). Morphometric analysis of IJs revealed both intra- and interspecific variations in length and diameter among populations. Interestingly, while EPN length influence mortality at three days post-inoculation. We found leaner IJs (< 25 µm) to induce higher mortality rates at 56 days post-inoculation. To better determine the structure and dimensions of the primary entry routes utilized by EPNs, we provide optical microscope micrographs of wireworm Agriotes spp. spiracle, anal sclerotized coating anus and anal muscles. Symbiotic bacteria of each EPN population were identified, and a biochemical characterization was performed using Analytical Profile Index tests. The symbiotic bacteria belong to the species Photorhabdus antumapuensis, P. laumondii subsp. laumondii, P. thracensis, Xenorhabdus bovienii and X nematophila. Bacteria biochemical profiles did not reflect the differences in virulence of nematodes-bacteria complex against wireworms. These findings highlight the importance of considering EPN morphometry and intraspecific variability in designing applications to control wireworms.
Read full abstract