Rabs are involved in neuronal development and protrusion formation. Existing studies support the notion that manipulation or mutation of Rab genes could lead to functional changes in neurons. However, whether Rabs gene-manipulation induced Drosophila eye-degeneration remains unknown. By down-regulating Rab5, but not Rab7, we first constructed a compound eye injury model in Drosophila. As the distribution, content, and even maturation of Rab5-positive endosomes are influenced by cytoskeletal proteins, like actin or tubulin-related proteins, the existence of a bidirectional regulatory relationship between Rab5 and the cytoskeleton remains unclear and worth researching. Through complete transcriptome sequencing combined immunofluorescence testing, we confirmed that down-regulation of Rab5 affected the increase of α-Tub84B (alternatively named TubA84B) but not γ-tubulin. Based on Weighted Gene Co-Expression Network Analysis (WGCNA) and multi-tissue screening verification, this study proposes that the apoptosis-related factors–Rab5–TubA84B have conserved regulatory functions with cooperative expression. Gene manipulation confirmed that apoptotic factors, especially rpr, strongly regulate Rab5, and may ultimately influence microtubule structure through complex routes, including the Rab5 variance and the intracellular configuration ratio of α-Tubulin to Glyceraldehyde-3-phosphate dehydrogenase.
Read full abstract