Abstract

Tubulins are major components of the eukaryotic cytoskeletons that are crucial in many cellular processes. Ciliated protists comprise one of the oldest eukaryotic lineages possessing cilia over their cell surface and assembling many diverse microtubular structures. As such, ciliates are excellent model organisms to clarify the origin and evolution of tubulins in the early stages of eukaryote evolution. Nonetheless, the evolutionary history of the tubulin subfamilies within and among ciliate classes is unclear. We analyzed the evolutionary pattern of ciliate tubulin gene family based on genomes/transcriptomes of 60 species covering 10 ciliate classes. Results showed: (1) Six tubulin subfamilies (α_Tub, β_Tub, γ_Tub, δ_Tub, ε_Tub, and ζ_Tub) originated from the last eukaryotic common ancestor (LECA) were observed within ciliates. Among them, α_Tub, β_Tub, and γ_Tub were present in all ciliate species, while δ_Tub, ε_Tub, and ζ_Tub might be independently lost in some species. (2) The evolutionary history of the tubulin subfamilies varied. Evolutionary history of ciliate γ_Tub, δ_Tub, ε_Tub, and ζ_Tub showed a certain degree of consistency with the phylogeny of species after the divergence of ciliate classes, while the evolutionary history of ciliate α_Tub and β_Tub varied among different classes. (3) Ciliate α- and β-tubulin isoforms could be classified into an "ancestral group" present in LECA and a "divergent group" containing only ciliate sequences. Alveolata-specific expansion events probably occurred within the "ancestral group" of α_Tub and β_Tub. The "divergent group" might be important for ciliate morphological differentiation and wide environmental adaptability. (4) Expansion events of the tubulin gene family appeared to be consistent with whole genome duplication (WGD) events in some degree. More Paramecium-specific tubulinexpansions were detected than Tetrahymena-specific ones. Compared to other Paramecium species, the Paramecium aurelia complex underwent a more recent WGD which might have experienced more tubulin expansion events. Evolutionary history among different tubulin gene subfamilies seemed to vary within ciliated protists. And the complex evolutionary patterns of tubulins among different ciliate classes might drive functional diversification. Our investigation provided meaningful information for understanding the evolution of tubulin gene family in the early stages of eukaryote evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.