Effective elimination of manganese (Mn) and ammonium (NH4+-N) from drinking water is still challenging. Utilizing oxidants to improve the simultaneous removals of Mn and NH4+-N from rapid sand filter (RSF) systems has been extensively studied. However, the prokaryotes containing in the water geochemical properties greatly affected the RSF performance. In this study, groundwater and micro-polluted surface water were used to compare with/without potassium permanganate (KMnO4) assistant on the contaminants removals and system stability. Results showed that KMnO4 reduced the start-up period of RSF for treating groundwater and surface water to 20 and 41 days, respectively, with excellent Mn removal rates (>97%). The relative abundance of efficient ammonia-oxidizing bacteria (Nitrospira) in RSF treated groundwater without KMnO4 was higher than that in RSFs treated micro-polluted surface water or with KMnO4, resulting in a higher NH4+-N removal rate of the former (∼57%). Notably, KMnO4 and prokaryotes synergistically contributed to the amorphous structure, mixed phases (buserite, MnO2 and birnessite) and mixed-valence Mn system of active manganese oxides (MnOx), whose abundant oxygen vacancies and highly reactive Mn(III) favored the autocatalytic oxidation of Mn, while NH4+-N removal relied more on bacteria actions. Additionally, prokaryotes enriched the bacterial community diversity, leading to a more stable RSF system when facing hydraulic loading shock. This paper provided new insight into the synergistic effect of KMnO4 and prokaryotes on Mn and NH4+-N eliminations in RSFs and was helpful for practical applications.
Read full abstract