Despite the tremendous accomplishments of AlpaFold2/3 in predicting biomolecular structure, the protein folding problem remains unsolved in the sense that accurate atomistic models of how protein molecules fold into their native conformations from an unfolded ensemble are still elusive. Here, using chemical exchange saturation transfer (CEST) NMR experiments and a comprehensive four-state kinetic model of the folding trajectory of a 71 residue four-helix bundle FF domain from human HYPA/FBP11 we present an atomic resolution structure of a transiently formed intermediate, I2, that along with the structure of a second intermediate, I1, provides a description of the FF domain folding trajectory. By recording CEST profiles as a function of urea concentration the extent of compaction along the folding pathway is evaluated. Our data establish that unlike the partially disordered I1 state, the I2 intermediate that is also formed before the rate-limiting folding barrier is well ordered and compact like the native conformer, while retaining nonnative interactions similar to those found in I1. The slow-interconversion from I2 to F, involving changes in secondary structure and the breaking of nonnative interactions, proceeds via a compact transition-state. Interestingly, the native state of the FF1 domain from human p190-A Rho GAP resembles the I2 conformation, suggesting that well-ordered folding intermediates can be repurposed by nature in structurally related proteins to assume functional roles. It is anticipated that the strategy for elucidation of sparsely populated and transiently formed structures of intermediates along kinetic pathways described here will be of use in other studies of protein dynamics.
Read full abstract