Abstract

The iron-molybdenum cofactor of nitrogenase (FeMoco) catalyzes fixation of N2 via Fe hydride intermediates. Our understanding of these species has relied heavily on the characterization of well-defined 3d metal hydride complexes, which serve as putative spectroscopic models. Although the Fe ions in FeMoco, a weak-field cluster, are expected to adopt locally high-spin Fe2+/3+ configurations, synthetically accessible hydride complexes featuring d5 or d6 electron counts are almost exclusively low-spin. We report herein the isolation of a terminal hydride complex of four-coordinate, high-spin (d5; S = 5/2) Mn2+. Electron paramagnetic resonance and electron-nuclear double resonance studies reveal an unusually large degree of spin density on the hydrido ligand. In light of the isoelectronic relationship between Mn2+ and Fe3+, our results are expected to inform our understanding of the valence electronic structures of reactive hydride intermediates derived from FeMoco.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.