We present a directed electrostatics strategy integrated as a graph neural network (DESIGNN) approach for predicting stable nanocluster structures on their potential energy surfaces (PESs). The DESIGNN approach is a graph neural network (GNN)-based model for building structures of large atomic clusters with specific sizes and point-group symmetry. This model assists in the structure building of atomic metal clusters by predicting molecular electrostatic potential (MESP) topography minima on their structural evolution paths. The DESIGNN approach is benchmarked on the prototype Mgn clusters with n < 150. The predicted MESP topography minima of Mgn clusters, n < 70, fairly agrees with the whole-molecule MESP topography calculations. Moreover, the ground-state structures of Mgn (n = 4-32) clusters generated through the DESIGNN approach corroborate well with the global minimum structures reported in the literature. Furthermore, this approach could generate novel symmetric isomers of medium to large Mgn clusters in the size regime, n < 150, by constraining the point-group symmetry of the parent clusters. The parent growth potential (GP) of a cluster gives a measure of its parent cluster to accommodate more atoms and characterize the structures on the DESIGNN-guided path. The GP of a cluster can also be interpreted as a measure of the cooperative interaction relative to its parent cluster. Along the highest GP paths, the DESIGNN approach is further employed to generate stable Mgn nanoclusters with n = 228, 236, 257, 260. Therefore, the DESIGNN approach holds great promise in accelerating the structure search and prediction of large metal clusters guided through MESP topography.
Read full abstract