Many protein-protein interactions behave differently in biochemically purified forms as compared to their in vivo states. As such, determining native protein structures may elucidate structural states previously unknown for even well-characterized proteins. Here we apply the bottom-up structural proteomics method, cryoID , toward a model methanogenic archaeon. While they are keystone organisms in the global carbon cycle and active members of the human microbiome, there is a general lack of characterization of methanogen enzyme structure and function. Through the cryoID approach, we successfully reconstructed and identified the native Methanosarcina acetivorans pyridoxal 5'-phosphate (PLP) synthase (PdxS) complex directly from cryogenic electron microscopy (cryoEM) images of fractionated cellular lysate. We found that the native PdxS complex exists as a homo-dodecamer of PdxS subunits, and the previously proposed supracomplex containing both the synthase (PdxS) and glutaminase (PdxT) was not observed in cellular lysate. Our structure shows that the native PdxS monomer fashions a single 8α/8β TIM-barrel domain, surrounded by seven additional helices to mediate solvent and interface contacts. A density is present at the active site in the cryoEM map and is interpreted as ribose 5-phosphate. In addition to being the first reconstruction of the PdxS enzyme from a heterogeneous cellular sample, our results reveal a departure from previously published archaeal PdxS crystal structures, lacking the 37 amino acid insertion present in these prior cases. This study demonstrates the potential of applying the cryoID workflow to capture native structural states at atomic resolution for archaeal systems, for which traditional biochemical sample preparation is nontrivial.