The performance of DSSCs (dye sensitized solar cells) with a new series of dyes having different halide groups (i.e. F, Cl and Br) on o-position substituted phenyl spacers with same coumarin donor moieties have been reported. Optical, electrochemical, molecular orbital and photovoltaic properties were studied by varying the halide groups using these dyes. The replacement of halide atoms in same coumarin based dye had a significant effect on the short circuit current density (Jsc), open circuit voltage (Voc), and photo conversion efficiency (PCE). The Jsc and PCE of dye CD-1 (fluorine substituted) are 10.3 mA/cm2 and 5.2% respectively, which is higher than CD-2 (chlorine substituted) and CD-3 (bromine substituted) dyes (having PCE 4.1% and 3.5% respectively) devices. The optimized geometry calculation of o-halide phenyl π-spacer dyes were ascertained by density functional theory (DFT) using the B3LYP/6-31G(d,p) basis set. Moreover, we have checked the effect of various substituents in the same dye structure by DFT analysis.