Abstract

The performance of DSSCs (dye sensitized solar cells) with a new series of dyes having different halide groups (i.e. F, Cl and Br) on o-position substituted phenyl spacers with same coumarin donor moieties have been reported. Optical, electrochemical, molecular orbital and photovoltaic properties were studied by varying the halide groups using these dyes. The replacement of halide atoms in same coumarin based dye had a significant effect on the short circuit current density (Jsc), open circuit voltage (Voc), and photo conversion efficiency (PCE). The Jsc and PCE of dye CD-1 (fluorine substituted) are 10.3 mA/cm2 and 5.2% respectively, which is higher than CD-2 (chlorine substituted) and CD-3 (bromine substituted) dyes (having PCE 4.1% and 3.5% respectively) devices. The optimized geometry calculation of o-halide phenyl π-spacer dyes were ascertained by density functional theory (DFT) using the B3LYP/6-31G(d,p) basis set. Moreover, we have checked the effect of various substituents in the same dye structure by DFT analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.