Joint low-rank and sparse unrolling networks have shown superior performance in dynamic MRI reconstruction. However, existing works mainly utilized matrix low-rank priors, neglecting the tensor characteristics of dynamic MRI images, and only a global threshold is applied for the sparse constraint to the multi-channel data, limiting the flexibility of the network. Additionally, most of them have inherently complex network structure, with intricate interactions among variables. In this paper, we propose a novel deep unrolling network, JotlasNet, for dynamic MRI reconstruction by jointly utilizing tensor low-rank and attention-based sparse priors. Specifically, we utilize tensor low-rank prior to exploit the structural correlations in high-dimensional data. Convolutional neural networks are used to adaptively learn the low-rank and sparse transform domains. A novel attention-based soft thresholding operator is proposed to assign a unique learnable threshold to each channel of the data in the CNN-learned sparse domain. The network is unrolled from the elaborately designed composite splitting algorithm and thus features a simple yet efficient parallel structure. Extensive experiments on two datasets (OCMR, CMRxRecon) demonstrate the superior performance of JotlasNet in dynamic MRI reconstruction.
Read full abstract