Cluster materials of the composition AdR4 (Ad = adamantane, R = organic substituent) and [(RT)4E6] (R = organic substituent; T = Si, Ge, Sn; and E = S, Se, Te) exhibit directional white light emission or produce second harmonics when irradiated with a continuous wave infrared laser source. The nature of the nonlinear optical properties correlates with the macroscopic structures of the cluster materials. The desired white light emission predominantly occurs in amorphous materials. It is therefore crucial to understand the geometric structures of the materials and the order within the materials. Here, we investigate the geometric structures of 12 different adamantane-like cluster materials by molecular dynamics simulations using a nonperiodic particle approach. The comparison of the calculated structure factors for two cluster materials with the corresponding experimental data obtained from diffraction and EXAFS measurements shows very good agreement. Our computations revealed that, on the one hand, larger, more flexible core structures (Ad < {Si4S6} < {Ge4S6} < {Sn4S6}) tend to lead to amorphous solids. On the other hand, larger substituents (methyl < phenyl < naphthyl) lead to more defined nearest neighbor interactions, with a tendency toward crystalline solids. Overall, our results show that a beginning order in the material results from a combination of the degree of flexibility of the core structure and the variation of the nearest neighbor interaction determined by the substituents.
Read full abstract