Abstract
Small-angle scattering is a commonly used tool to analyze the dispersion of nanoparticles in all kinds of matrices. Besides some obvious cases, the associated structure factor is often complex and cannot be reduced to a simple interparticle interaction, like excluded volume only. In recent experiments, we have encountered a surprising absence of structure factors (S(q) = 1) in scattering from rather concentrated polymer nanocomposites (Genix et al. in ACS Appl Mater Interfaces 11(19):17863-17872, 2019). In this case, quite pure form factor scattering is observed. This somewhat "ideal" structure is further investigated here making use of reverse Monte Carlo simulations in order to shed light on the corresponding nanoparticle structure in space. By fixing the target "experimental" apparent structure factor to one over a given q-range in these simulations, we show that it is possible to find dispersions with this property. The influence of nanoparticle volume fraction and polydispersity has been investigated, and it was found that for high concentrations only a high polydispersity allows reaching a state of S = 1. The underlying structure in real space is discussed in terms of the pair-correlation function, which evidences the importance of attractive interactions between polydisperse nanoparticles. The calculation of partial structure factors shows that there is no specific ordering of large or small particles, but that the presence of attractive interactions together with polydispersity allows reaching an almost "structureless" state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.