Abstract The majority of breast cancer-related mortality is due to metastasis. Patients diagnosed with metastatic breast cancer have a dismal 5-year survival rate of only 24%. The RNA-binding protein Hu antigen R (HuR) is overexpressed in breast cancer. Cytoplasmic HuR accumulation correlates with high-grade malignancy, poor distant disease-free survival and serves as a prognostic factor for poor clinical outcome in breast cancer. HuR promotes tumorigenesis by regulating numerous proto-oncogenes, growth factors and cytokines that implicate major tumor hallmarks including invasion and metastasis. Knocking out HuR by CRISPR/CAS9 technology inhibits cell invasion in breast cancer cells. Therefore, HuR is an emerging target for breast cancer therapy, especially the lethal metastatic breast cancer. RNA-binding proteins had previously been considered “undruggable” due to lack of a well-defined binding pocket for target RNAs. Using high throughput screening followed by structure-based rational design and lead optimization, we have identified small molecules that inhibit HuR-mRNA interaction at nM to sub-µM potency. Our lead compound, KH-3, potently inhibits breast cancer cell growth and decreases cell invasion in vitro similar to HuR knockout, as well as increasing the expression of epithelial marker E-cadherin. In the study of mechanism of action, a transcription factor, FOXQ1, which is recently revealed to implicate in breast cancer invasion and metastasis processes, is found for the first time to be a direct mRNA target of HuR and one of the top genes that are reduced by KH-3 treatment. Exogenous introduction of FOXQ1 can rescue cell invasive capability impaired by HuR knockout and abolish the effect of KH-3 on inhibiting cell invasion in breast cancer cells. Moreover, KH-3 disrupts HuR-FOXQ1 interaction in RNP-IP, RNA pull down and FOXQ1 3′-UTR luciferase reporter assays. In vivo efficacy studies show that KH-3 not only exhibits potent antitumor efficacy in an orthotopic xenograft model of breast cancer, but also efficiently inhibits lung metastasis and improves mouse survival in an experimental metastasis model. Our data provide a proof-of-principle that HuR inhibition by KH-3 may be developed as a promising molecular therapy for inhibiting progression and metastasis of breast cancer with high HuR. Citation Format: Xiaoqing Wu, Gulhumay Gardashova, Lan Lan, Shuang Han, Cuncong Zhong, Ragul Gowthaman, John Karanicolas, Dan A. Dixon, Danny R. Welch, Ling Li, Min Ji, Jeffrey Aubé, Liang Xu. Targeting RNA-binding protein HuR to inhibit human breast cancer invasion and metastasis [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 1235.