Carbon geological storage (CGS) is one of the key processes in carbon capture and storage (CCS) technologies, which are used to reduce CO2 emissions and achieve carbon-neutrality and net-zero emissions in developing countries. In Thailand, the Mae Moh basin is a potential site for implementing CGS due to the presence of a structural trap that can seal the CO2 storage formation. However, the cost of CGS projects needs to be subsidized by selling carbon credits in order to reach the project breakeven. Therefore, this paper estimates the economic components of a CGS project in the Mae Moh basin by designing the well completion and operating parameters for CO2 injection. The capital costs and operating costs of the process components were calculated, and the minimum carbon credit cost required to cover the total costs of the CGS project was determined. The results indicate that the designed system proposes an operating gas injection rate of 1.454 MMscf/day, which is equivalent to 29,530 tCO2e per year per well. Additionally, the minimum carbon credit cost was estimated to be USD 70.77 per tCO2e in order to achieve breakeven for the best case CGS project, which was found to be much higher than the current market price of carbon credit in Thailand, at around USD 3.5 per tCO2e. To enhance the economic prospects of this area, it is imperative to promote a policy of improving the cost of carbon credit for CGS projects in Thailand.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access