Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features, with dissimilarities due to different data and methods used in model generation. The quantification of model structural similarity can help in interpreting the geophysical properties of Earth’s interior and establishing unified models crucial in natural hazard assessment and resource exploration. Here we employ the complex wavelet structural similarity index measure (CW-SSIM) active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade. We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling, which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution. Our results show that the CW-SSIM values vary in different model pairs, horizontal locations, and depths. While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation, the difference of tomography methods may significantly impact the similar structural features of models, such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China. We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.
Read full abstract