Abstract

Metabolic network construction plays a pivotal role in unraveling the regulatory mechanism of biological activities, although it often proves to be challenging and labor-intensive, particularly with non-model organisms. In this study, we develop a computational approach that employs reaction models based on the structure-guided chemical modification and related compounds to construct a metabolic network in wheat. This construction results in a comprehensive structure-guided network, including 625 identified metabolites and additional 333 putative reactions compared with the Kyoto Encyclopedia of Genes and Genomes database. Using a combination of gene annotation, reaction classification, structure similarity, and correlations from transcriptome and metabolome analysis, a total of 229 potential genes related to these reactions are identified within this network. To validate the network, the functionality of a hydroxycinnamoyltransferase (TraesCS3D01G314900) for the synthesis of polyphenols and a rhamnosyltransferase (TraesCS2D01G078700) for the modification of flavonoids are verified through in vitro enzymatic studies and wheat mutant tests, respectively. Our research thus supports the utility of structure-guided chemical modification as an effective tool in identifying causal candidate genes for constructing metabolic networks and further in metabolomic genetic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.