The digitalization of quality control processes and the underlying data infrastructures for safety relevant components, such as hydrogen pressure vessels, plays a significant role in the transition towards Industry 4.0. In the current safety regulations for hydrogen pressure vessels, there is no established concept for structural health monitoring. The development of a reliable structural health monitoring methodology for monitoring the structural integrity of pressure vessels enables a fast-forward transition from personnel- and costintensive recurring inspections, a.k.a. periodic maintenance, to predictive maintenance. In the work presented; we investigated the application of ultrasonic guided wave propagation to monitor and assess the condition of Type IV composite overwrapped pressure vessel (COPV). A sensor network of fifteen piezo-electric wafers is placed on the carbon fibre reinforced composite cylinder. Five different artificial damage configurations are created by gluing two different weight blocks on three different locations. The database containing measured guided wave data sets is enriched by two different boundary conditions. We utilized an open-source software, openBIS labnotebook, to store and analyse experimental datasets. The guided wave ultrasonic signals were investigated and analysed by using commonly used ultrasonic features (e.g., amplitude, frequency, time of flight) as well as non-traditional time-series features (kurtosis, skewness, variance). The features were used to calculate damage index and the detection performance for the results has been evaluated. The results suggest that both traditional and non-traditional features assume significant importance in artificial damage detection. The future works will additionally involve the impacts of operational conditions, such as periodic pressure variations temperature loadings as well as material degradations.