Freezing of gait (FOG) is a common disabling motor disturbance in Parkinson's disease (PD). Our study aimed to probe the topological organizations of structural and functional brain networks and their coupling in FOG. In this cross-sectional retrospective study, a total of 30 PD patients with FOG (PD-FOG), 40 patients without FOG, and 25 healthy controls (HCs) underwent clinical assessments and magnetic resonance imaging (MRI) scanning. Large-scale structural and functional brain networks were constructed. Subsequently, global and nodal graph theoretical properties and functional-structural coupling were investigated. Finally, correlations between the altered brain topological properties and freezing severity were analyzed in PD-FOG. For structural networks, at the global level, PD-FOG exhibited increased normalized characteristic path length (P=0.040, Bonferroni-corrected) and decreased global efficiency (P=0.005, Bonferroni-corrected) compared with controls, and showed reduced global (P=0.001, Bonferroni-corrected) and local (P=0.032, Bonferroni-corrected) efficiency relative to patients without FOG. At the nodal level, nodal efficiency of structural networks was reduced in PD-FOG compared with PD patients without FOG, located in the left supplementary motor area (SMA), gyrus rectus, and middle cingulate cortex (MCC) (all P<0.05, Bonferroni-corrected). Notably, altered global and nodal properties of structural networks were significantly correlated with Freezing of Gait Questionnaire scores [all P<0.05, false discovery rate (FDR)-corrected]. However, only an increase in local efficiency (P=0.003, Bonferroni-corrected) of functional networks was identified in PD-FOG compared with those without FOG. No significant structural-functional coupling was detected among the 3 groups. This study demonstrates the extensively impaired structural and relatively reserved functional network topological organizations in PD-FOG. Our results also provide evidence that the pathogenesis of PD-FOG is primarily attributable to network vulnerability established by crucial structural damage, especially in the left SMA, gyrus rectus, and MCC.