Technological advancements and the appearance of low-cost Raspberry Shake seismographs have enabled the development of citizen science seismic networks in many areas worldwide. These networks can help reduce seismic risk and increase citizens’ understanding of seismology and earthquakes. Such a network exists in Bucharest, one of the cities in Europe that are struck and affected by strong Vrancea earthquakes. The paper aims to show that data from such networks can be used in both outreach programs and research studies. There are presented, for the first time, seismic observations collected over two years beginning in the summer of 2020 in the Bucharest area based on the low-cost seismometers from the citizen science Raspberry Shake network. A significant number of earthquakes from the Vrancea region were recorded by the Bucharest Raspberry Shake Seismic Network (BRSSN). Some of them were felt by Bucharest inhabitants. The National Institute for Earth Physics in Magurele (Romania) organizes educational events that promote geosciences among the population and presents the tools at its disposal for a better understanding of earthquakes and their effects, contributing this way to the development of the concept of citizen science. Citizens are the first witnesses to seismic events and the citizen science seismic network provides them with the first direct information about the event via web apps available for any internet-connected device. Their involvement as non-professional participants helps in providing data for scientists via questionnaire forms to improve scientific research for earthquake assessment. Since citizen seismometers are installed in urban areas, an analysis of the ambient seismic noise (ASN) was performed in addition to the analysis of recorded seismic events. The analysis indicates that the level of seismic noise is mainly controlled by human activities. At the same time, for one citizen seismometer installed in a school in Bucharest, the results show patterns of noise variations due to students’ activity.
Read full abstract