We report a versatile approach for the design of substrate-independent low-fouling surfaces via mussel-inspired immobilisation of zwitterionic peptides. Using mussel-inspired polydopamine (PDA) coatings, zwitterionic glutamic acid- and lysine-based peptides were immobilised on various substrates, including noble metals, metal oxides, polymers, and semiconductors. The variation of surface chemistry and surface wettability upon surface treatment was monitored with X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. Following peptide immobilisation, the surfaces became more hydrophilic due to the strong surface hydration compared with PDA-coated surfaces. The peptide-functionalised surfaces showed resistance to human blood serum adsorption and also effectively prevented the adhesion of gram-negative and gram-positive bacteria (i.e., Escherichia coli and Staphylococcus epidermidis) and mammalian cells (i.e., NIH 3T3 mouse embryonic fibroblast cells). The versatility of mussel-inspired chemistry combined with the unique biological nature and tunability of peptides allows for the design of low-fouling surfaces, making this a promising coating technique for various applications.
Read full abstract