Respiratory diseases such as asthma and rhinitis are multifaceted disorders which are exacerbated by various factors including: gender, age, diet, genetic background, biological materials, allergens (pollen and spores), pollutants, meteorological conditions and dust particles. It is hypothesized that, the number of valid physician diagnosed cases of paediatric asthma, which has resulted in emergency room visits in Trinidad can be expressed as a function of the magnitude of pollen counts, particulate matter (PM10), and selected meteorological parameters. These parameters were used to develop a 7-day predictive model for paediatric asthma admittance. The data showed no obvious, strong correlations between paediatric asthma admissions and dust concentrations, and paediatric asthma admissions and pollen concentrations, when considered in isolation or in a linear fashion. However, using polynomial regression analysis, which looked at combinations of interactions, a strong 7-day predictive model for paediatric asthma admissions, was developed. The model was tested against actual data collated during the study period and showed a strong correlation (R2 = 0.85) between the regression model and the actual admissions data.