Metal complexes of trithiadodecaazahexaphyrin (Hhp) that contain MII3O clusters inside a π-extended trianionic (Hhp3-) macrocycle have been prepared. Studies of the magnetic properties of NiII3O(Hhp) and CuII3O(Hhp) reveal a diamagnetic and EPR-silent trianionic (Hhp3-) macrocycle and diamagnetic NiII3(O2-) or paramagnetic CuII3(O2-) tetracations. The positive charge of MII3O(Hhp) is compensated by one acetate anion {MII3O(Hhp)}+(CH3CO2-). The three-electron reduction of {MII3O(Hhp)}+ yields {cryptand(Cs+)}2{NiII2NiIO(Hhp5-)}2-·2C7H8 (1) and {cryptand(Cs+)}2{CuII3O(Hhp•6-)}2-·C7H8 (2) crystalline salts. The magnetic properties of 1 reveal the formation of Hhp5- and the reduction of nickel(II) to the paramagnetic NiI ion (S = 1/2), which is accompanied by the formation of the {NiII2NiIO(Hhp5-)}2- dianion. As a result, the magnetic moment of 1 is 1.68 μB in the 20-220 K range, and a broad EPR signal of NiI was observed. The Hhp5- macrocycle has a singlet ground state, but the increase in the magnitude of the magnetic moment of 1 above 220 K is attributed to the population of the triplet excited state in Hhp5-. The {NiII2NiIO(Hhp5-)}2- dianion is transferred from the doublet excited state to the quartet excited state with an energy gap of 1420 ± 50 K. Salt 1 also shows an unusually strong low-energy NIR absorption, which was observed at 1000-2200 nm. In 2, a highly reduced Hhp•6- radical hexaanion (S = 1/2) coexists with a CuII3(O2-) cluster (S = 1/2) in the {CuII3O(Hhp•6-)}2- dianions. The dianions have a triplet ground state with antiferromagnetic exchange between two S = 1/2 spins with J = -6.4 cm-1. The reduction of Hhp in both salts equalizes the initially alternated C-N bonds, supporting the increase in the Hhp macrocycle electron delocalization.
Read full abstract