Materials with piezoelectric properties associated with the ferroic phases generate multiferroic structures at microscopic level. Multiferroic core-shell nanoparticles with different configurations were considered: nanospheres versus nanotubes - spherical (magnetostrictive core / piezoelectric shell), respectively cylindrical (magnetostrictive rod / piezoelectric cylindrical coating) The external sphere diameter / cylinder lengths were of 80 - 100 nm to 360 nm, while the inner sphere / rod diameters were of 20 to 60 nm. The influence of the constituents shape on their control process realized by an applied magnetic field, H0 (100 - 270 Oe) was investigated. The nanoparticles were simulated using the HFSS 13.0 program, at frequencies in microwave range (16 - 28 GHz), considering the nanostructures with hexaferrites as magnetic phase (AFe12O19 M-type hexaferrites, with A an alkali earth metal) and the Bi2NiMnO6 perovskite like piezoelectric. The particle configurations response is function of their geometrical shape, modified by the core diameter and the shell thickness. The magnetoelectric (ME) coefficient tensor has been determined using a physical algorithm based on the near-filed values in the particles vicinity, generated by the HFSS, and also the ME voltage coefficient (obtained of tens of mV/cmOe). Performance of the two shapes composite nanoparticles to generate a strong ME response was discussed comparatively and the influence of the shape factor was illustrated on graphs. Each composite configuration presents specific advantages in respect with the control process by the H0 field, considering that the effect of dipolar field generated as response by the electric phase is strongly anisotropic. These features can be elegant illustrated by simulations (non destructive, applied at nanoscale) which help us to decide to the proper nanoparticles shape and the optimal intensity of the applied fields for the desired strength of the ME effect in a defined microscopic area.
Read full abstract