The conversion of mechanical vibration to electrical energy has shown great promise for extending battery life of smart sensor wireless devices for various engineering applications. This paper presents novel analytical models of a piezoelectric bimorph, using the closed-form boundary value (CFBV) method, for predicting the electromechanical power harvester frequency response. The derivations of the coupled electromechanical dynamic response of the transverse-longitudinal (CEDRTL) form based on the CFBV method were developed using the reduced strong form method of the Hamiltonian principle. The equations from CEDRTL can be reduced to give the coupled electromechanical dynamic response of the transverse (CEDRT) form. The electromechanical frequency response functions with variable load resistance were also given in detail using Laplace transformation. The two theoretical studies are compared together and validated with an experimental study. For some cases, when the load resistance approached open circuit, the difference between CEDRTL and CEDRT tended to be more pronounced. Conversely, the CEDRTL and CEDRT models tended to overlap when the load resistance approached short circuit. Nyquist plots are used to demonstrate the shifting frequency and amplitude changes due to variable resistance. Overall, the experimental and CEDRTL model results were very close to each other.