An earthquake structures are mandatory to avoid significant damages (i.e., collapse) and aims that structure withstand a major earthquake without collapse. The design approach adopted is to ensure that the columns of the structure more capable to resist moments than beam; to avoid progressive collapse of structure due to failure of columns in lower level; it is necessary the columns have stronger than beams (strong column weak beam). The concept of SCWB is to ensure that plastic hinge formed in the beam not in the column; this help in dissipating the more energy along with providing ductility to the structure. If the plastic hinge is formed on the both ends of column then, the column is not able to spread the plasticity and collapse which are leads to global failure. The failure modes in all past earthquake is exactly opposite i.e, strong beam weak column; and comes to sway mechanism and fails to collapse. For this it is foreseen that the values of ratio of Mc/Mb (ratio of sum of ultimate moment of resistance of columns to sum of ultimate moment of resistance of beam) in the beam-column joint are stated by many design codes and the values are different ranging from 1.2,1.3,1.4,1.5 to 2, etc. Another effect of ratio Ic/Ib (ratio of moment of inertia of column to moment of inertia of beam) have been studied but the exact meeting of SCWB behaviour in the structures at the time of collapse not stated clearly. The Mc/Mb and Ic/Ib ratio are very important to prevent damage in the structure under seismic action. In the present work, attempts are made to achieve exact ratio of exact strong column weak beam. In this study, the combined effect of two ratio (Mc/Mb, Ic/Ib) simultaneously investigated in different zones of India to find out exact SCWB ratio’s value for to meet the SCWB behaviour. Different numerical examples are presented of combine ratios (Mc/Mb,Ic/Ib) and pushover analysis is performed on each ratio’s. The result of the investigation highlighted on the objective that is to find exact SCWB ratio value considering the parameter like target displacement, ductility ratio, hinge response etc.