Within a multi-phase transport model with string melting scenario, jet transport parameter $\hat{q}$ is calculated in Au+Au collisions at $\sqrt{s_{NN} } $= 200 GeV and Pb+Pb collisions at $\sqrt{s_{NN} } $= 2.76 TeV. The $\hat{q}$ increases with the increasing of jet energy for both partonic phase and hadronic phase. The energy and path length dependences of $\hat{q}$ in full heavy-ion evolution are consistent with the expectations of jet quenching. The correlation between jet transport parameter $\hat{q}$ and dijet transverse momentum asymmetry $A_{J}$ is mainly investigated, which discloses that a larger $\hat{q}$ corresponds to a larger $A_{J}$. It supports a consistent jet energy loss picture from the two viewpoints of single jet and dijet. It is proposed to measure dijet asymmetry distributions with different jet transport parameter ranges as a new potential method to study jet quenching physics in high energy heavy-ion collisions.
Read full abstract