Abstract

Within a multi-phase transport model with string melting scenario, jet transport parameter $\hat{q}$ is calculated in Au+Au collisions at $\sqrt{s_{NN} } $= 200 GeV and Pb+Pb collisions at $\sqrt{s_{NN} } $= 2.76 TeV. The $\hat{q}$ increases with the increasing of jet energy for both partonic phase and hadronic phase. The energy and path length dependences of $\hat{q}$ in full heavy-ion evolution are consistent with the expectations of jet quenching. The correlation between jet transport parameter $\hat{q}$ and dijet transverse momentum asymmetry $A_{J}$ is mainly investigated, which discloses that a larger $\hat{q}$ corresponds to a larger $A_{J}$. It supports a consistent jet energy loss picture from the two viewpoints of single jet and dijet. It is proposed to measure dijet asymmetry distributions with different jet transport parameter ranges as a new potential method to study jet quenching physics in high energy heavy-ion collisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.