In order to detect the size and shape of defects inside wood, a propagation velocity model of stress wave in the longitudinal section of trees in different direction angles was proposed and evaluated. The propagation velocity model was established through theoretical analysis. Four representative tree species in the northeast region of China were taken as test samples. The propagation velocity of stress wave in the longitudinal section of trees in different directions was measured using a nondestructive testing instrument. The corresponding regression model was obtained, which was in good agreement with the theoretical mathematical model. For the larch log samples, a healthy multiple regression model (z = 109.2×2 – 182.1y2 + 36.78x2y2 – 34.76x2y4 + 1627) with correlation coefficient R2 = 0.97 and root mean square error RMSE =17.81 was used to conduct two-dimensional imaging of defective logs. Based on the results of two-dimensional imaging, the highest fitness of the images was 94.24%, and the lowest error rates of defect cavities was 6.11%. The imaging results showed that this method accurately detected the internal defects of trees and was not affected by the size of defects.
Read full abstract