To understand the secondary transfer performances of residual prestress after the anchoring failure of end-anchored steel wire strands due to corrosion fracture, six steel wire strand components of post-tensioning prestress were designed and fabricated. One-side fast corrosion was applied to the steel wire strand components using the electrochemical method until anchoring failure was reached. The sphere of influence, stress changes, and the retraction and swelling effect of broken beams after failure were investigated. The influences of factors such as concrete strength, stirrup area, and the length of the component on the secondary transfer length of residual prestress were discussed. Based on the deformation relationship between prestressed steel wire strands and concrete in the stress transfer zone, a stress equation was established and solved through a bond constitutive model. A prediction model of the effective stress transfer length of prestressed steel wire strand after failure was proposed. The results demonstrated that residual prestress can have a secondary transfer after the corrosion fracture of end-anchored steel wire strands, but some effective prestress may be lost. Moreover, the loss of prestress is inversely proportional to concrete compressive strength. When the specimens are relatively short, the prestress loss increases significantly. Concrete strength has significant influences on the length of secondary transfer. The proposed simplified calculation method of the secondary transfer length of residual prestress has a relatively high accuracy, with an average error of 2.9% and a maximum error of 5.2%.
Read full abstract