The purpose of this study was to examine molecular markers of the stress response at the pituitary and peripheral levels in animals that responded differently to chronic mild stress (CMS). Rats were subjected to 2-weeks CMS and symptoms of anhedonia was measured by the consumption of 1% sucrose solution. mRNA levels of CRH-family neuropeptides (Crh—corticotropin-releasing hormone, Ucn1—urocortin 1, Ucn2—urocortin 2, Ucn3—urocortin 3), CRH receptors (Crhr1—corticotropin-releasing hormone receptor 1, Crhr2—corticotropin-releasing hormone receptor 2) and Crhbp (corticotropin-releasing factor binding protein) in the pituitaries of rats were determined with real-time PCR. Plasma levels of ACTH (adrenocorticotropin), CRH and urocortins were measured with ELISA assays. CMS procedure led to the development of anhedonia manifested by the decreased sucrose consumption (stress-reactive, SR, stress-susceptible group). Additionally, the group of animals not exhibiting any signs of anhedonia (stress non-reactive, SNR, stress-resilient group) and the group characterized by the increased sucrose consumption (stress invert-reactive group SIR) were selected. The significant increases in ACTH plasma level accompanied by the decreases in the pituitary gene expression of the Crh, Ucn2 and Ucn3 in both stress non-reactive and stress invert-reactive groups were observed. The only molecular change observed in stress-reactive group was the increase in UCN2 plasma level. The differentiated behavioral stress responses were reflected by gene expression changes in the pituitary. Alterations in the mRNA levels of Crh, Ucn2 and Ucn3 in the pituitary might confirm the paracrine and/or autocrine effects of these peptides in stress response. The opposite behavioral effect between SNR vs. SIR groups and the surprising similarity at gene expression and plasma ACTH levels in these two groups may suggest the discrepancy between molecular and behavioral stress responses; however, there results might indicate to similarity underlying different ways to cope with stress conditions.
Read full abstract